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Introduction

This paper disc.sses the-application of the likelihood ratio gradient estimator

to srimlatinns of highly dependable systems. We li' that this paper makes

the following contributinns to the existing literature:

i. While the hasis or the likelihod ratio -gradient e.ismation algorithni has

been known rir soiw time (see. for example, [6], [7). [8], [20], [221, and

1231, mi|rl hes. is known abnout Ile emniric.il hichavir of the estini. tor in

practical problhn settings. In this paper, ue show, throughextensiv. ex-

perinientation (see Sect ion 6), t hat the likelihood rat io gradient est imat r

Ms-an efective tul for mcasuring parameter sensitivity in the conlcxt of

Markovian models nl"Iighly dependable syse|.nis. Bh ~steady-stat• and

terminaling perfrmanee measures were studird. The positive resuls (hit

we obtained for the steady-state gradient estiniation problem are or-par-

tic:ilar interest, in light of the somewhat pe.ssiui~tic coneltisions reatdied

in previous (heoretical and empirical- wrk -(see, fir example, [7), (1), and

[20]). Thus, the results obtained here.suggest that the steady-state likeli-

hood ratio gradient estimator can be qiuit eficient when implemented in

an appropriate problem setting.

2. The paper describes one of the rew. succtesfrtul implementations or sophi.ti-

cated variance redictiron techniques within a widely distributed simulation

software package, namely the System Availability Estimator (SAVE) (sec

[1 I] and [12) developed with;: IBM. The 'riance reduction techniques

that are described within this paper have been implemented so as tobe

-invisible to the user.



3. Because or the high degree or dependability or the systems typically simre-

latcd by SAVE, rare event simulation techniques (spccifically, importance

sampling) are used extensively within the package (so that failures ran be

observed). This paper describes how to cornhine likelihood ratio gradient

estimation and importance sampling.

4. 'Thin paper shows how "discrete-time convcrsion" can be applied to the

steady.state likelihood ratio gradient estimator (see also 151 and [20]). This

tmethod reduces variance by remnoving variability due t) the exponential

honlding time variates amsnciated with I ihe cntinuous-time Marknv rhailh

that is being simulaied.

5. The coMpittatinnal burden imposed upon SA'E by the variance reduc-

tion techniques and likelihnnd rntio gradient e.-timator ran be significant.

For example, the numeriral functfinn evaluations required to compute I he

analytically-derived partial derivatives associated with the gradient esti-

mator are time-consuming. Section 5 describes varinus ideas used wilh

SAVE to improve the computational efficiency of the estimator.

6. Certain theoretical loose-ends concerned with the likelihood ratio gradient

estimation technique are addressed within the paper. In particular, it is

shown- that for finite-state contlinuous-time Marko chains, the "anmiabili-

ty" assumption described in [20 and used in 151 is essentially always valid

for reasonable performance measures (see the Appendix to this paper).

Also, it-iS shown that "discrete time conversion" applied to our gradient

estimators is guaranteed to give a variance reduction.

This paper is organized as follows. Section 2 describes the basic mathemati-

cal model that is simulated by SAVE. In Sections 3 and 4, respectively likelihood
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ratio gradienit estim:ation for transient anti Ateady-.stat prrorrnance measures

is discussed. Sec~tion 41.3 also discusses certain isight5 that were obtained b%

analytically analyring the behavior or Lte likelihond rat i0 gradient estimator for

a couple of (very) small model%. In Section 5, itnpiemcntation issues are dis-

cussed. Section G is devoted to a description aind ditcussion or the experimental

resuttlts obtained through extensive simulations or several large models having

more than a million states. Section 7 discu~sses future. research directions. The

concluiding A ppendix enut aiu% tmst or the thretricalI mat erial alluided ill

Itenm 6 above.

2 Problem Setting

In thiqt section we briefly discos- Lte mondeling problems being addresscd by tile

SAVE package [in] and di-scrile (lie basic mathematical model being simulated.

We also deSCribe various perfrcmmance measures; as~oiatcd with tile models we

consider here.

2.1 Modeling Highly Dependable Systems

SAVE han been designed to construct and solve stochastic models. or raOul-

tolerant computers. Fault-tolerant computing har been applied to two rumn-

damentally different classes of1 applications. One dealls with mission oriented

systems with high reliability requirements. such a% space computers, avionics

systemsi, avid ballistic missile derense computers (see 141). For the mission to

suacceed, the system must not fail during the mission time. Hence, the prob-

ability that the system dame not fail during the mission time, i.e. the system

reliability, is a measure of interest. Mean time to system failure is another mea-

sure that is use to evaluate such systems. The other class of applications deals

with continuously operating systemns with high availability requirements, such
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as telephone switching systems, general purpose icontputcr systems, transaction

processing 'ysterus (e.g. airline reservation systems), and communication net-

work computers. For such systems, system failures can be tolerated if they occur

infrequently and they resuilt in short system down tinies. For such systems, thc

expected fraction of time the systemn is operational, i.e. the system availability,

is a measure of interest.

Froin the modeling point of view. a system cnsistst of a finite collection of

hardware and stoftware comitpfhirnts, ena of whirl, may be subject to failure, re-

covery, and repair. Software comnponents in operatiiin can also be miodeled with

constant failuare rates (see 1171). Component interactions often have a sulbstan-

t al effert on sysein nvailability and must therefore lie considered in addit ion to

th niidmial component behaviors. The state spare size of such moel grows

(often exponentially) witlh thme number af components being modeled. Thr .

fore, SAVE provide% a high level modeling language containing constructs which

ait] in representing the failure, recovery and repair behavior of compnen~its in

the system as well as important component interactions.

If time independent failure and repair rtes are MasUMd theii ~ .1,m1te state

space. tinme homogeneous continuioust time Markov chain can he constructed anm-

tomnaticafly from the modeling constructs used to describe the system. Since

thc size of markov, chains grows exponentially with the number of coumponents

modeled, simulation appears to be a practical way for solving models of large

systems. However, the standard simulation take-4 very long simulation runs to

estimate availability and reliability measures because the system failure event is

a rare event. Thcreforc, variance reduction techniques which can aid in coniput-

inig rare-eve-nt. probabilities quickly are of interest. Specifically, the Importance

Sampling technique ha been found to be most useful to estimate the various
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dependabilit v measures (see [12]). In thin paper, we consider the gradient esti-

mat ion problem for these measures. We use one change of mecasure to compult

thc gradient using the likelihood ratio gradient estiniation technique, and we use

another change of measure (importance sampling) to compute these gradients

quickly.

2.2 Markovian Model

Soippnse Y = 11'. : > 0) is an irreducible, conit innu tint Nlarkov chitin

with state space F and infinitesim~al generator Q(O) = 1(0,i,j) :i~j E E),

where 11 it in rciwne open -et. 0. We ts(, (lie notation that P# andi ie represent

the probability measure ant) expectation, respectively, induced by the generator

niatrix-Q(O) for some value or 0. We assumet that E~ can be partitioned into

two subsets: E = 0 U F, where 0 is the set or up m(ates, i.e. the set or states

for which the system is operational, and F is the set of down, or failed, states.

We assume that the system starts out in the state in which all components are

operational; wc label this state as. staie 0.

Let X = {X. : n > 0) be thie sequence (of states visited by the chain

and too be the time spent in each state, where nt > 0. Also, we define X.

(Xa, ,V,....,X.). Recall X is a discrete time hiarkov chain (l)TMC) with

transitioin matrix P(O) Jefined by I'(0, i, I) = .i(0,Q )/q(i, i) for i 7F j anti

P(O, i, i) = 0, where 9(0, i) = -9(0,0i ). rurthermore, conditional on X, the

toos are independent exponential random variales for which the (conditional)

mean or i. is 1/q(o, x.).

Define Jr.S : it 0) as the transition times of Y, i.e. T(, = 0, and T,

to + (I+ --- + 1, for " 1. Then define N(1) =supin >0: T, :5t).

Lot T denote a stopping time satisfying assumption AS in tle appendix.

Also, for any set of states A. WC lct *A denote the time the CTNIC first enters



the set A, i.e. IA = inf{. > 0 : _ A,V, E A). Of particular interest are

ao, which is the first return time to state n, and r1 F, which is the first entrance

time into the subset P or failed states. Our goals are to estimate (1) some

performance measure r(O) = EZ(O), where Z(G) is some (measurable) function

or Y and (possihly) 0, and (2) its gradient r'(0) = , r(0). By varying our c.hoice

of the function Z, we can compute many different performance measures.

2.5 Performance Measures

We will be interested in two types or cdependabilit v' iensurems associated with h the

CTMC Y: transient measures and so-called steady-slate measures. Considering
thme trnsient fieasres irst, the interval availability, .4(). is defined by

) 1 .

This is the. rrartinn or time that, the system it operational in the. time interval

(0, (). Ive let

](I) = E.IA(I)]

be the expected interval availability and let

F(1,t) = PoA() < .)

denote the distribution or availability. The reliability of tie system is defined

to be the probability that the system does not fail in the interval (0, t):

R(i) = p,{OF > 1) = E ,11 .,>l 3J.

For stcady.state measures we assume that Y is irreducible, in which case

Y, * Y as s - oo, where * denotes convergence in distribution and V is

a rv having iic 0. t te-state me diuretihn. s'; E i solves the e.

quationst iQ =0). Notice that steady-state measurtm are independent of the
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starting state of the sstcni; however, we il hostefuloprinal s

Late (i.e., state ti) to define a regencratv state for the systein. Also, we

assume that when computing steady-state measure.,, we can express Z(G) as

Z(O) = linh-.. ~f (, ,)ds, where f (0, -) i-, a rcal-valned function on E

which satisfies assumnpt ions A7 rind A8 in the appendix. By regenerative pro-

ce-is theory (see 121), our stcady-statc mneasures takeP the form or a ratio or two

expected valuies:

=~ ~~r IfZ() f £[ f(0, V,)s

irf (o. i) = Ipeo,, then ,17(0)I is the long run fraction af lime the systemn

is operational and is called the steady-state availabilityi which -we de,mnte h%

A = lim1..c. EtIA(I)J. We will sometimes find it convenient to consider time

exrferfee unavailability U(I) = I-1 I(f) = I - I,#A(1)I and the steady-st ate

unavailailit~y, 11 = I - A. The prolIem of steadly-staite estimation thus reduce.,

to one of estimating time ratio, of I wo expected values.

Tim' mean -timne to failure (NITTF), Ei,(rF, is typically thought of at a

transient measure, since it depends on the starting state of the system (statc

0), which is assumed fn be (he fully operational state. A ratio representation

for E,*vnrJ is found to be particularly useful and is given by

V-1k1=E#IMin(*F,oCt)j

The derivation of this formula is given in [121. Thus, we can view estimatilig

E.iar1 as a ratio estimation problem, where both the numerator and the de-

nominaltor are estimatedl using a regenerative simulation. Therefore, in Section 4

we consider the estimation of the mean time to failure (NITTF) together with

steady-state measures which are also (and more commonly) estimated ussing

regenerative simuiations.
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3 Estimating Transient Performance Measures

Recall that our goals are to estimate r(O) = E,#Z(O) and its derivative r'(0) with

respect t, the parameter 0. In the case of transient pcrformance measures, we

assume that our function Z(O) has one nf the two following forms:

1. Z(O) = Is, where S is some (meAsurahle) set of events.

2. Z(0) = g f(0, Y.)ds, where 7' is some stopping time satisfying assutrp.

tinn A5 given in the appendix and f(0,.) is a real-valued fnnc:tioe on E

satisfying assumptions A7 and A8 in the appeni'dix.

We define the "likelihnod" of a sample path under parameter 0 as
rN(T)

dga(7*,0) [r1 (T q(O. X&,)xp{-q(0.Xtkl(NkX I
k=n -

cxp{-q(fl, .XN,(T)+, )(T -7,(),

and the likelihnnd ratio is given by

L(7, 0, G0) = dp(T, 0) d,,(T, On), (3.1)

where On is some fixed value of 0.

Our performance measure is given by

r(O) = EZ(O) = EfZ(O)I(7*0,On).

We call this transformation a "change of measure" since we are now computing

the expectation basd on a different parameter value. The validity of the change

of measure is discusvd in (11 and 1121. By performing the change of measure,

the expectation operator is now independent of the parameter 0.

If we formally differentiate this expression, assuming that we can interchange

the derivative and expectation operators, we have that by applying the product
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rule of differentiation,

r'(0) = EetZ'(o),(7, 0. On) + E,.7Z()L'(T, 0, On),

where Z'(0) = 0 ir Z(1) has F'r,,, 1 ahove, and Z'(0) - J[ y(o, 1;)ds ir Z(O)

has form 2 above, and

L'('ro 0) = , ~(,q(#. X) MO, X', X1'+1
- q(r X 91010,. -,) + I'(oAh.I',. ) J

-- ''(f. "N(?))(" - TN(T)) J L(7";O,eOn). (3.2)

The prn" or the validity of the interchange of derivative and expectation is

given in Theorem 1 in the appendix.

The term.s siplify when we evaluate r'(0) at the point 0 = 0(. In this case.

we have that since IAT. 0.. On) = 1.

r'tO,,) = E,.Z'(o,,) + E,.Z((,)L'(T,0,0n) (3.3)

and
N(_(O_,_ ) 1'(00 , X,. X..)1

L'(T, On, [qton. - q'(011, Xk),k + (0o.X\,, X+,)j
q'(O,,, XNCT)+,)(T-- TN(T). (3.4)

Note that ir T is either the time of the first transition after a deterministic time

t or a hitting time to a set F, the last exponenti;l term drops out.

The stopping time, say T1, used in the likelihood ratio need not be the

same as the stopping time, say 7 . used for the function Z(Oo). lh1. ar, we

always need to take T, 2! 7j. with strict inequality possible. For example, when

computing reliability at a time t, note that Z(O,) is Y,-measurable, while we can

use the likelihond ratio based on 7 T .;: where Xj is the sigma-field generated

by the process lip to time I.



These results are similar to the results derived in In 1201, only the special-

ization to Poisson processes is discussed. Also, the "amiability" assumption

disciused in [1 and (201 holds in the current context, and examples of perror-

manre measures satisfying thist condition are discussed in Section 2.3 and in the

Appendix.

3.1 ImportLnce Sampling to Reduce Variance

We can now apply another change of memure to implement the importance

sampling to obtain

r'(G,) = B.Z'(0,) .T,o0 ,0) + F..Z(9,,)1.'(T. 0nOo)I.(T.0o, "), (..)

where 0" is the parameter %lue used for the importance sampling change of

neasure. L(T,0Or) is the same as Equation 3.1 except with (00,r) playing

the role or (0,0o) (as it should be). Note that we can use two different changes

or measure, i.e. two different values of 0, to estimate the two'expectations

on the right hand side of Equation 3.5. Also, the value of r uaed after the

0 transition can depend on Xk, the entire sequence of states visited up to

that point, and also on 7,, the time of the 0' transition. We call-this method

'"dynamic importance sampling" (DIS). These ideas are discussed in Section 5

and also in 1101.

We can actually separate the likelihood ratio into two different components,

the first including orly the transition probabilities of the embedded DTMC and

the second incorporating only the random holding times, i.e.

L(,( ;o, V, G"): , (T, Do, r).,j(T, o, D'),

where
N(T) . .

o , ,X, X& +1) (3.6)L(,o,) = P(o',X,,4+,.0
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N(7)

1,(T, ,,,0.") = ]- q(O, Xk) cxp{-q(0,Xk)ltk )
e q(0", A\k) exp{-q(O", Xk) k}

exp{ -q(0n, XN(T-)+I)(T - 7*V(T)))

exp{-q(O, XN(7)+, )(T - 7N(T))) (3.T)

Thus, we can apply different changes or measure to the two components of the

likelihood ratio, which allows us to tailor each change of measure for a specific

purpose.

Lewis and 13h1 [I 5 pre'eteled an importance samplitig technique for es-

timiting I ransient measures. They apply "failure hiasing" to lie enil'deled

DTIC; this causes failures to occur with higher probability and therefore quick-

ly moves (hises) the I)TMC towards the set of failed states. Thi% change of

measure in incnrporalcd in the first :omponent *,r lite likelihood ratio 1,1. They

also apply "forced transitions" to the holding time in state 0 (the stale with all

comp-nenls operational) to the estimation of reliability. This forces ihe next

component failure to occur before time 1. Specifically, if X,. = o and T. < 1,

then fhe next holding ftie, 1.+1 is forced to h between 7ero and i - 7, by

selecting 1.+1 front the conditional density given by

h(I.+IIX.,h(1,3 +11 3,1 ) = 1 - • '' ' T )

where 0 < f4+1 :5 1 - 7. and An is the total failure rate in slate 0. Trhis change

or measure is incorporated into the seeond part of the likelihood ratio, L2. The

simulation continues until time T = min(Fr, N(I) + 1).

Note that h(i.+l, IX., i.) is not positive whenever the exponential density

is, and so the standard theory of importance sampling says that this is not a

legitimate change of measure. However, in this case h(.+, IX., t.) is positive

over that part or the sample space ({: ft- < I)) that counts, which is sufflcicnt

(set -9])
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4 Estimating Steady-State Performance Mea-
sures

Recall that our goal i- to estimate r(O) = EIZ(0) and its derivative. For steady-

state performance nieasurcs. we consider Z() of tie form

Z(o) = r (0,n.)dn,

where f(0,.) is a real-valud function on B' satisying assumptions A7 and A8

in the npprndix. If we assume that the CTMC Y has finite state sparce E and

the transition matrix P for the embedded I)TMC is irreducible, then we have

that I ' V as t -. oo. In this case, we define our stopping time 7' to be tre

time or the first return to the initial state 0, i.e. 7" = o,. Let "n he the first

return time of the embedded D'IMC to state 0. Since Y is a CTNIC, T is a

regenerntion time. Ilenc:e, ssuming that EojZ(O) < oc, we can express r(f)

using the ratio formula

EOZ0(0)

where

ZT(0) = f(0. '.)do

V. - I

= f (0, ')L

T =

We also have that the ratio estimator satisfies the mollowing central limit theo-

rem:

/' ( ,. - r) * N(0,ao)

as ,i -# 00, where f. = IF--, ,T,j(P)/ ,", t, ZTj(6) and t, j = ,2,...,

denote independent, identically distributed observations of ZT(O) and T, respec-
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tivly, and 02 = Var[Z7T,(O) - r7*f1([71 2 . See 12) for rurther details.

If one formally diffcreutiales the expression for r(O) by interchanging the

derivative and expectation, one obtains

'(O) - u'(Oo)I(O,1) - P (Ot).(Oo)(.
- lA) 12(0,,) (4.1)

where

u,(Of.) = I0, ZT(O)

,'(O.) = ',',Z.'(o,) + I.4*, Z7 (o,.),(7. OnO)

1(o,,) = ro7

1'(o,) = reTL'(T, Of,, 0

and
rn- I

Z"(o)= f'(0n, Xk)t&

!.'(T, Oo, o) = P jOqo: ) q'(O,, .')I& - ,.(o,, A,., X.)j1"=7. O(n,,k on)o,,,'(01,'Xk,) ]"

The proof of lhe validity or Ite interchange of the operators is given in the

appendix.

In order to construct confidence intervals for our estimate of r'(0), we need

an expression ror its asymptotic variance. This is given by

(42C2+ 2v*B 2+ L02+ 2

+2I 2 AAn -MA - ACYAD (4.2)

where ox = I'ar(X), O'x = COV(X, Y),

A = Z,(0o)+Z"(0o)'(7,o,A)) (4.3)

13



B = T (4.4)

C = ZT(O,) (4.5)

D = TI'(T, o., O,,), (On.6)

and

= E#"A

6 = EF

A proofrf the validity or the expressinn fAr ie variance is given in 120]. llowever,

we give a simpler and c:leaner proor in the appendix.

4.1 Conditioning to Reduce Variance

Conditional Monte Carlo is a tcchnique which can be used to reduce the variance

in simulalinns of CTMCs (See (3] and 113]). By conditioning on the embedded

DTMC X, we arrive a what is known as the discrete time method, in which the

holding times, 1,, are replaced by their (conditional) means, l/q(O, X.). There

are two advantages of using this approach. First, since we replace the random

holding times 1, with Iheir (conditional) nteans, we do not have to generate

exponential variates. Also, as discussed in 13) and (13], this transformation is

guaranteed to give a reduction in the variance of the esiinate of r(O). We

also show that the transformation is guaranteed to reduce the variance or the

estimate of r'(O).

Using conditional Monte Carlo, we obtain another ratio formula

EOEjZT(O)IX EG(O)]r(O) EEITIX = .(If ( (4.7)

14



where a straightforward rarlation sh.ws lhat

tr0-1

G(o) = g(o, X) (4.8)
k =n

ro--

B1(0) = 1 h(0,X,) 0.9)
h=O

.q(O.i) = f(O.i)/q(O,i). i E E

h(O, i) = I lq(O, i), i e F.

and r,, is the first returit timr or thr I)'iMC It siLe 0.

In (6). it is shown that under certain conditionq (viz., assumption A4 given

in the appendix) that

F(o) = E.( )i,(,,.. )., 11(0)i0, (,o ,)'

where L(.n,O, On) is the DTIC likelihood ratin, whicht is defined as

= i (o, XP ..i X ) (4.1o)
k=n

A simple calculation shows that I,('n,o.Oo) = EeII,(T'.,O,O,,)IXJ. Note that t

is the same. as ,I defined in Equation 3.6. ir one formally differentiates ihis

expression by interchanging the derivative and expectation, one obtains

r'(On) = fi'(,,)i(Ao) - i'(0r)i,(Go)12(Oo). '(.1

where

it(On) = E,.G(00)

fs'(0o) = EA ' (0,.) + £,,GOr~) I.'(,'o., .#o0)

i(oD) = E,,1(O.)

i'(Oo) = ,..i'(00 )+ £.(O.)t'(,OoOn)

15



and
P = '(oA, Xk)q(0o, Xk) -q'(o, Xk)f(o, X') ((.0.2)

k=_ 9 q(O, Xk)

9l'(0~ 01 V- 4.3
k= q2(00, Xk) (.

h=n,-.-' 00.oo On O'X,, Xk+l) (4.14)

The procf nf the validity nr tie intercliange or the operators. in this case is given

in 11
let tor and f Ie theLte variances of Ihe gradient estimators when using the

ratin rnrr|,la obtained without and with condlitional Nonle Carlo, respectively,

i.e. 2. whic.h is given in Equatit, 4.2. is the asymptotic variance or the esti-

niator or F"Al'iaion ,4.1, and A# s fhe asymptotic variance or the estinintor of

Fqainti. 1.11. Trhen, We have that ff_ - , which states that when using the

ratit, formula conditional Monte Carlo always gives rise to a lower asymptoti

variance cnnstant (see Proposition .1 in the appendix).

4.2 Importance Sampling to Reduce Variance

As in Section 3.1, we can use importance sampling by applying another change

of measure. However, in this case since. we use conditional Monte Carlo to

condition out the holding times in each state whrn estimating steady-state per-

formance measures, the likelihood ratio only consists of its first component LI,

given in Equation 3.6, or equivalently, L, given in Equation 4.10.

4.3 Two Simple Examples

In this section, we consider two simple availability examples. The first is a one.

dimensional birth and death process with three states, which was also analyzed

in 1121, and the second is a two-dintensional five state birth and death process.



Because or their simple structure, we are able to do an extensive amount ofanal-

ysis on these models. Recall that we dcflnedi thc sensitivity or a performance

measure with respect to a certain parameter to he the product or parameter

itself multiplicd by the gradient of the performance measure with respect to the

parameter. Therefore, a %ensitivity measure-. thie effect of relative changes to

parameter values ott a performanicc measure, find so relative changes in the pa-

rameters corresponding to the largest sensitivities will cause the largest change

in thfe prfutrniance mnure. We will show that when one sensitivity is much

larger in magnitutde larger thtan another, its relative accuiracy is mutch greater

than that or the smaller sensiiliviy. In addition, we can estimate the sensit ivi-

tie- with the largestt orders or mnagntitude with abonut tile same relative accuracy

as the regular estimate, as long ast each %anple (e.g. a regenerative cycle in the

case of staysaexetimatioti) ronsixts of only 4 few transitions. Trhis is trtur

in the highly reliable component situation which we consider in this paper. We

measure the relative accuracy by tlie squared coefficient of variation. Much or

the analystis was done utsing the symtbolic manipulator Scratchpad (25].

W%'e dcrine the vector of parameters 0 which we compute sensitivities with

respect to as the vector of all cont inuous-valued parameters of the model. Noter

tliat (ie above claints depend on the paranueterivation of the model. hlowever, in

the reliability context which we are considering in t his paper, there is a natural

parameterization of the model, which is to have 0 consist of the values of all of

the component failure rates and repair rates. With 0 derined in this manner,

the claimb sem to hold.
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4.3.1 A Three State Example

The three state example cnn be viewed as a reliability system in which there is

one type or component with redundanicy of two anti the comnponents can fail and

be repaired. Tile comnpontents have failure rate A and repair rate it. The state

spare is E = 40. 1, 2). We assumne that births correspond to failures and deaths

correspond Ito repairs so that state i corresponds to having f ailed components.

We rnsider the svottin In be operational in slates 0.1nd 1 bill railed in state 2.

Th~e t ransit ion matrtix P, or tile e,,bcdckd f)T-NC fias Itfe followving non-zero

entries: T'(n, t) =P(2. 1) 1, I'(l, 2) =A/(A + i), and P(1,O0) = g/(A + it)

Using the method-or cnitional Monte Carlo, we let hi~ he the mean holding

time oin sate i. Thus, ho 1f(2A)i Ill ] /(A + i), and h2 I /it. Since we arr

working with highly reliable systems, we assume that A < i. We canp further

assuine that it = 1, since this only fixes the time scale.

We are interested-in Lte st-eady-state unavailability r, which is thle steady-

state probability of being in lte fatiled state 2. Recall th~at we can estimalte

this quantity uiving thle regenerative method and can express r as. tile ratio

E(GIIE(II1, as in Equation 4.7. In this example, we set f (0) = f (1) = 0 and

f1(2) = 1. We assume that state 0 is the regenerative state. The numerator in

our ratin formula can be explicitly written as G = "rh 2, and the denominator

can he expressed as It = hn + hl + nrQhi + hi). where nr is the number of

times tile failure state is reached in the regenerative cycle. Note that np- has a

geometric distribution, son that i(n r] = A/to and Varin r] = A(A + 1)/112. Thus,

BIG) = hA/it and '1jIj1 (h.o+hi)+ (it, + h2)A/iv. As shown in (121, we have

that r = 0(A 2) and

%VRrfG - ,1IJ ]
CU2r~r)= r2(EII) 2 in \A



wherc~ CI'r tip) denoites the asympt otir squared coefficient of variation or our

estimate of r after m regenerative cycles (we modify Knuth's 0-notation 1141

to mean 1(r) 0(9(z)) if thrre exist constants. C, anti C2 such that for all r

suficiently sirall, 0 < G1.q(r) < f (r) < C,2g(r) )

StAightforward cailculations show that the sensitivities rk O (A2) and

r,= O(A'), where we use the notation re = 0 - Or/80. Using the asynip-

- tour variantre from the (centratl U1i14 Theoem for gradient estimtatoIrs fromnt

.5ectinti -1. we can arrive at lite asyniptotir squared coeffiC'U'tltq ofvaria inn of

ouir -etridvty estitnal es. which art' given hA (' 1,2(r%, In) = 0( /A)/mn ancd

CI"(,,.r) 0l/A),n.All of thec variaice anti covariatice te'rm.- iii the

expression fn~r the asynmptotic va~riance of lte gradients were usced itt ltfe rnlcu.

---------- ltioinvin this examplce. -1t (uris. out that thet domuinant terins in the expression

for tlie variance of the gradients mriernus invilhving the variances of thle flown

tine init cy'cle G7 ancd its graicicut.

Thus, when A C it, we haveithat both or lte sensitivities are of the saine

order a% thfe ra'giiar est imate, and the relative accuracies of the regular estimate

and the sensitivities are about lte same.

4.3.2 A Five State Example

The five state examuple model% a systent with two types of components, each

of which has reduandaucy of two. There is also lte added restriction that once

at component of one type! fails, the componets of (be other type cannot fail

until the state with all comnponents operational is reached. Thus the state space

of this example is E = {(0,0),(l,0),(2,0),(0, J),(fl,2)), where in state (i,j),

i represents the nuniber of failed components of type 1, and j is the number

of failed components of type 2. We assume that the regenerative state is the



state in which all components are operatinnal. We consider the system to be

operational in states (0,0). (1,0), and (0, 1), but failed in states (2,0) and (0,2).

We let Aj denote the failtire rate or component type i, and let it denote the repair

rate or ioth types of components. We assume that A2 < A, ) p L 1.

The transition inatrix of the enbrddd DTMC has the following non-zero

entries:

r((no).(t.O)) =A,/(A, 4 A2)

P(( 1.)), (2,0)) A, /(A, 4 ,i

-0/(A) + )

P((Oo),(0,)) /(A,-4 A2)

p((0.i), (oo))- = i/(A + ,)

r2,0), ) P((l, 2), (0, I)) = 1.

We le h yj) di, ' the mCanholding Iim Cin state (i,j). Tis, h ,,, 1 /(2, +

2A) hon) = l/(A, + it), h(n,j) = 1/(A2 + It), and hcz,n) = h(0(,2- 1 .

In tbis example, we set f(0,0) -(1 l 0) = f(0.I) = 0 and f(2, 0) = 1(0, 2) =

I. lUsing the-ritio-forinula-again to estimate the steady-state unavailability, we

have that the winiuerator can be explicitly written as

G.q 1[.vj,(,))nlhnh(,n) + 11X,.=Cn,,)jfnlh(o,?),

and the denominator can be expressed!M

It f 0hlon) + I!X,,ln)l(hi,n ') + nI(h(l,O) + h2,n)))

•+4 lX,-fln,i))(h(o,t) + nll(h(o,t) + h(o,2 ))),

where X, is% the first state visited by the embedded D14MC, n) is the number

of times state (2,0) is visitcd in the regenerati ve cycle, and n2 is the number
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of tittes state (0,2) is visited in the rcgeneralive cycle. Note thai conditional

on X= (,0), n, has a geninetric distribution, and conditional on .' = (0, 1),

n2 has a genmetric distrihtion. Thl', E[nlX\ = (1,0) = A,/Jj, VIar[nIXi =

(1,0)1 = A,(A, + 1)/a 2. [.InIX = (0,1)1 = A2/.t, and V'ar[.2l, = (0, ) =

A2(A2 + it)/lI. i Thus,

lF(nJ- (At + A;,)112

and
" 2(A2 + A2 + (A, + A2),) + 0 2

2(A + A2)117

"hereror('. a.miliilig that.tt A2 < A, < i = 1, we have tat r - 0(A2) anti

VarG - rl] I
C'"(r.m) = \'(I[.-)' /e A,mr2('1ll)2 n? \,i J

Straighlrerward calg-ilntinns slinw that Ihe sensitivities ri = 0(A2) alli

rA - (A'(J + A,). Using the asymplol ic variance from the Central L,imii Then.

rein fnr gradient estimators, we Call arrive at the asylptotir squared coefficieit

or variatinn of our senslilivit' estitnales, which ai given by

1V'(rAi'm): =-O~ rn'k|)

and

inkA 2)AA,

We only used the terms involving the variances of Lhe down time in a cycle and

its gradient in theme calculaiOnns since, when A2 < Al C p = 1, these turn nil(

to be the dominant terns as they were in the three-state example.

Fro,,M this example, we e that when A2 4: AI 4 P = 1, the sensitivity

with respect to At is much larger in magnitude than the sensitivity with respect

to A2, and the relative accuracy of the former is much better than that of the

latter.
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Thus, we see that in these two exanmplcs the relative accuracy of the senfrn-

tivity with the larger magnitude is or tile same order of the relative accuracy of

the regular estimate. Though these results were derived for simplc cxamlsc., we

can see that this is also true ror the models used in experimentation in Section 6

5 Implementation Issues

In- this section we consider the imnplemient ation or the different variance redlic.

tiait technicques described in the-previous sectionti. These techniques have been

implemented in the SAVE packilgr so that large nodels can he simolated. One

salient fealtlire of (lur implementation is that We Ilse one simulation run for eCOO-

milling all Lte measures andi sensitivities. Regenerative simulation is liked with

the "all components operational" state as the wegenerative state. Tilc event

generator simulates only the embeddeA Markov Chain. for the steady-state

measuro~ we accumulate functions or the mean holding time% in the various

states and also functions of the gradients of mean holding times andi transi-

tion prftbabilities. For the transient neasures we accumnlate functions of the

samplehoitlding times (from exponential distributions) in the various states and

also gradients of the transition probabilities anti densities of the holding tmes.

The likelihuood ratio for transient mecasures is different for each of the different

transient estimators allowing uts to tailor it for tile specific Application.

We hrive employed various techniques in the Implementation of tile SAVE

package which allow the CThtC to be generated quickly. W~e do not generate

the entire state space explicitly since the models which we solve using SAVE canl

have millions of states. Instead, we use arrays to keep track of the number of

operational andi spare components of eacht type and the order of components in

the repair qucuer. ThEA 1rnformation ir, iuficient to determine the state that the
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systein is in. In addition, arrays are used to store the total failure rate and total

repair rate of each type or component. Also, we keep track of the sum of fill

or thc failure rates of all operational and spare comnponents and the sum of all

the repair rates or coniponente currently being repaired. Since each transition

typically affects only one component (the program has been implemented to

allow for the possibility or the statuses of moire than one component changing

on a single transition, e.g. one component failumec causing others to fail also),

we are able to update thn arrays anti thme two sumis quickly. By having these

quantitiest readlily available, we can easily determine the transition probabilities

or the embedded DTh4C anti also Itle total rate ouIt or a state.

The imporianc sampling for the embedded. hlarkov chain is based on the

following hieuristics. As suggested in [12), we ned to move the system very

quickly to the set of failed states F, and once F is entered, the importance sam-

pling should he tn-ned off so that (lie systemn quickly retUrns- to state 0, the "all

components operational" state. W~e achieve this by increasing the probability of

failure transitions Over rpair transitions. This has been called "failure biasing"

in [115]. We amsign a combined probability flies I to the failure transitions in

aill the states where both failure andi repair transitions are feasible. Individual

failure and repair transitions are selected in the ratio of their rates given that a

failure or at repair is sel, .ted, respectively. We call this the Rias 1/Retio method,

or simply the Bia method. We have found two other methods useful for se-

lecting individual failure transitions, given that a failure has occurred. The first

is to use a unifrm distribution on the failure transitions, which has very good

performance for "unbalanced" systems, as shown in Section 6 and in 1121. We

Call this the Bid81i/Ba1ariag nmethod. The second is to give higher combined

probability, Giat, to those failure transitions which correspond to componen-
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t types which have at least one component of their type already failed. This

exhausts the-redondancy quickly and has much better performance for "bal-

anced" system-;, as shown in Section 6 and in [12). We call this the BicAR/BiaN2

method.

For the steady-state unavailability cacht regenerative cycle corresponds to a

sample. We use either direct simulation or the DIS method given in Section 4.2

to est imat e steady-state unavailahility and its sensitivities. For tile mean time

to failure, a sample evids when either the regenerazion occurs or the systeli

enters o.,c of Ithe systemt failed statrs fromn the set F. In the latter case, we

continuc-lo simtulate the embedded Markor c:hain uintil the regeneration occurs

before starting a new sample. This wastes. only a few events as; typically a

regenerattive cycle is short (the number of events. per cycle is apprc. cirmtely

twice Lte average redundancy, which is typically two or three). Once again, we

use either direct simulation or thie 1)15 method to extimat* the mean time to

failure an(] its stensitivities. For the transient meastires miultiplc regeneliative

cycles, may be cont ainedl in a single sample. Moreover, P. sample typically ends

either when a failure occurs or when the time interval expires, which is; usually

in the middle of some regenerative cycle. As its the case for the mean time

to failure, we continue to simislate the embedded Markov chain until the next

regeneration occurs before starting a new sample. Separate accumulators for

the appropriate likelihood ratios and their derivatives are maintained for each

transient estimator, time: hori~ton of interest, and parameter a sensitivity is

computed with respect to. Thuts, all measures can be estimated simultaneously

from a single simulation run.

In the SAVE package, tlue user is% able to compute sensitivities or aul of

the performance measur1es with respect to any continuous valued parameter of
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the modelI, where a sensitivity or a performance measure with respect to some

parameter is defined as tile product of the parameter itself multiplied by the

gradient of Ole performnanc~e measure wit It respect to the parameter. In its most

general form, SAVE employs a symbolic differcutintor to compute the derivatives

needed during the simulation. This allows the use of complicated expressions

to describe the parameters of thc system. For example, one could specify t hat a

failure rate of some component to be .5AI + 4A2A5, and then compute the sensi-

tivity of sonic performnance measure with respect it) the parameter A2. However,

the computation of sensitivities is somewhat slow using this technique, with the

extra Cl' U ltle needed to compute each sensitivity being about tile samie as

the tie needed to rompute tile regular (nion-gradient) performailre mnensure.

Therfre, we have employed special techniques in the implementation of tile

SAVE package to allow thle user to rnnipute sentsitivitics-witll respect to certain
paraetes wth ittle extra computational effort. if the user desires to conpue

sensitivities wi~th respect to only compnnent failuire rates and repair rates and

these rates are not themselves functions of other parameters, then the addition-

a] CPU time needed is small, as; shown in Section 6.2.3. Note that when in

expressions for the gradient of a performance measure given Equations .1.3 and

3.4, the only derivative terms which we have to compute are Z'(0) and 9'(G, r, Y)

(since both 9(0, z) and P(O,:, z) can be expressezl solely in terms of 9(0, X,

For the tranuient performance measures we consider in the SAVE package, we

have Z'(0) = 0. In the case of steady-state performance measures computed

in SAVE, we have that thme role that Z(G) played in the transient measure cure

has been replaced by G(G) and 11(0) since we use conditional Monte Carlo (se

Section 4.1), which depend on the parameter 0 only through q(0,z,y). Now

note that q(0. r. y) is an integer multiple. say k, of either a component failure
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rate or repair rate (where k is either lte rcdundainc of tile r ponent or the

number or busty repairmen). So by only comrtputinig sensitivities with respect to

simple failure and repair rates, thle (leriv-ative of q(G, r, y) is either 0 or k, thus

allowing us- to bypass tihe -tyinlrolic differr'ntiat or.

6 Experimental Results

In this section, We Will diSCUSS thle results or simulations or two differcnt model,.

in nrdoer It, atnalVr Ithe behanvior of gradient em inint c% via thle likelihood oral ios

method atic to dtrionstrate time effectiveness oft different variance reduction

techniquoes. W~e comrpare Lte sensitivitirs to) the regular estimiates in many cases

in order tn benchmark our results;, where we define the sensitivity of a nieasure

with rerprct to a paramneter to lbe the proidurt orfitle gradient of tlie measure

with resprt to thoe parameter multiplied by lihe value or thle parameter itself.

All numerical (non-siulat ion) and simulation re-smlts were obtained using the

SAVE parkage ((1 11).

6.1 An n-component parallel systein

The purpose or the firstt set Of eXperimlenlts is to VeXaminC the effect Of Lte length

of the regenerative cycle on the variability of likelihood ratio gradient estima-

tors of stentdy-state performance measures. We will discuss tile results of some

simulations of an a-comporent parallel system, where we varied the number of

components n from 2 to 12. In order for the system to be operational, there

must be at least one ifunctioning component. I lie repair rate ji Was fixed at

1.0 for all values of n, and the values of the faire rate A were varied so that

the actual v'alue of the steady-state unavailability remained fixed at 0.001. ror

catch value of n, we simulated for 1,0243,000 events and formed estimates of the

steady-steady unavailability and the sensitivities of it with respect to A. Table
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I contains thie values or the numerical results of steady-state unavailability and

its sensitivity with resPeC~t to the failure rate A, sintd also their respective point

estimates and percentage relative half-widths or the 90% confidence interval.,

obtained sing direct sijulation for each or the experiments. The percentage

relative hialf-width of a confidlenc~e interval is defined to be 100% times the coil-

fidence interval hair-width divided by the point estimate.

It is interesting to note that for smnall values; or n, thc relative size of the

confidence interval,; of thc sensitivities arr close to thle relative size orfithe con-

iidciice intervals of the estimates of the steady-state unavailability. lHowever,

as the nutmber nf compnnents in tloe system increases, the relative accuracy of

the sensitivity estimates degrades. ']he rason for this is that the numlber of

events per regenerative cycle is increasing as the number of componenit in thse

sytmgrows since we have adjusted the failure rate in order that thie value

of the steady-state unavatilability remains constant. Since the grasdient orfithe

likelihood ratio turns owt to lie a sumt of random -variables, as the regenerative

cycles become longer, we are summing up-miore-random variables, which in turn

leads to more variability.

6.2 Balanced and Unbalanced Systems

Thr next model we experimented with is a large computing system, whose block

diagram its shown-in Figure 6.2. This model its also. discussed in [121 and (161. We

use two different paramecter sets to create a "balanced" and an "unbalanced"

system. In order for .& system to be considered balanced it must satisfy two

criteria. First, each type of component haes the same amiount of redundancy,

(i.e. the same numher of componsents of a type must fail in order for the system

to become nonoperational, e.g. 1-ouit-of-2 of a type has the same redundancy

as 3-out-of-4 of another type). Also, the fail ure rates of all of the components
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Figure 1: A block diagram of the computing system modeled.

must be of the same order of magnitude. A system that is not balanced is called

unbalanced.

For a balanced system we select two sets or processors with two processors

per set, two sets of controllers with two controllers per set, and six clusters of

disks, each consisting of four disk units. In a disk cluster, data is replicated so

that one disk can fail without affecting the system. The "primary" data on a

disk 6 replicated such that one third is on each of. the other three disks in the

same cluster. Thus one disk in each cluster can be inaccessible without losing

acces to the data. The connectivity of the system is shown in Figure 6.2. We

assuime that when a processor of a given type fails, it has a 0.01 probabilty of

causing the operating processor of the other type to fail. Ead unit in the system

has two failure modes which occur with equal probability. The failure rates of

the processors, controllers, and disks are assumed to be 1/2000, 1/2000, 1/6000

per hour, respectively. The repair rates for all mode I and all mode 2 failures are
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I per hour and 1/2 per hour, respectively. Cipinients are repaired by a single

repairinaii who chooses components at random fronm the set of railed units. The

system is defined to be operational ir all data is inaccessible to both processor

types, which means that at least one processor or each type, one controller in

each set, and 3 no I of 41 dick units in eacti of the six disk clust er are operational.

We also assume that operational components continuet to fail at the given rat es

when the systenm is failed.

We make inonfr changes tn Orii ahove laraniters' settings in order to create

an unbhalanced systemn. We increase the numtber or processor.- of each type to .1,

and double cacti processor's rfiltire ratec tv I/1I(10 per hour. We decrease the

riiure rates )r all other components by a rartor or ten. In this systemn, although

R procssoir failure is ninre likely te, nriir in a failuire transition, it is less likely

to cause a system failure due It, die high proressnr redundancy. This is tyipical

behavior for an unbalanced syst em.

0.2.1 Steady-State measures

In this section we discuss time results of our experiments ror estimating the

steady-state unavailability andi the mean time to failure andi their sensitivities

with respect to the parammeters rrf (failure nmode 2 repair rate) and clir (disk

controller I failure irate). These two parameters were selected to demonstrate

that we can estinmate the sensitivities with the largest magnitude with abhout

the samec relative accuracy as thc regular estimates~ and the sensitivities of s-

mailer magnitude are not estimated a-s precisely, as shown by the example in

Section 4.3.2. Numerical (non-simulation) results for these measures and their

sensitivities were obtained using the SAVE package [11)J. Since the balanced

system has a few hundred thousand states and the unbalanced system has close
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to a mnillion Mtates, only bounds could be computH' [161. These bounds are very

tight and typically do wiol differ from~ the eXACt resUS significantly. We Simulate

both the balanced nnd (he unbalanced system,%. Thle goal or the simulation ex-

perinwents is to demoinstrate (hat we can obtain estimate,. of certain sensitivities

that have approximlyI tile same relative error aS the regular estimate. Also,

we see that Lte various variance reduction teChnlitileS have the Same effect On

thle sensitivity estimateRIS as th~ey do On the regular estimates. Significant, vari-

ance reductions1 can lie obtained ulsing the Riostl/fia'd mcthrio ror the balanced

systems and flias 1/Relane-int methrie for Lte unbalanced systems, as is. shown

in [121. These restults hold for both lte regulnr estimates anti the sensitivities.

Tables 2 andi 3 shnw (lie restults obitained for thle balanced and Lte unhbalanced

systems, respectively. We ran thle sinmulalit long enough so that the smallest

entry inl thle tables for the percentage relative half-widths of thle 9090 confidence

intervals was less thalt 5%. The percentage relative hirl-width of a confidence

interval is defined t~o be Ion% timer the Cnnfidence interval htalr-width divided by

the point( estimante. 'This corrpnds t0 approxillnately 100,000 events for each

entry in Table 2 and 1,000,000 events ror each entry in T able 3, respectively.

Based on empirical results ob~tained in [101, the values; for biesI = 0.5 aind

biest = 0.5 were selected for 1)15.

There are a few important points to note in tile tables. For Lte balanced

system, we used the Rise i/Rioxf method, andi Riasi/Rlalencing is used for the

unbalanced system. As is shown in [J0), these methods are most effective for

their respective models when estimating the regutlar (non-gradient) performance

- - measures. We can %ee that this is also the case for the sensitivities since we

obtain estimates of the largest sensitivities that are about as accurate ast the

regular eitirnatc.
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The relative precision or thle regular estimates and of each or their respective'

sensitivities with respect to rrf are approximately equal, which agrees with tile

analytic result we obtained from Lte sinple examvples in Section .1.3.1 Also, as

claimed in Section '1.3.2, we do nnt obtain as accurate estimates tor Lte sensi-

tivity with respect to elfr sinc.e it is of smaller miagnitude. It is also interesting

Lt note that thc amowunt ot improvement front importance sampling over direct

simulaion in tile sensitivities is about the samne as the improvement in tile reg.

iflar entimates. rTis is becaiise th snime likelios'd ratio needed far import, ne

sampling is us-ed in both the regular estimate and thle sensitivit ies, and thle like-

lihood ratio in bath cases is muiiedi by the accumulators at the end or each

cycle.

Also n.,te that, Lte stensitivity estimates with respect to er1frin the unhalaiteed

system using direct simulation given in Table 3 are'very poor. This is, because the

value.o a dr is much smaller than the' valuie or parameter prorfr, the processors'

tailure rate, and so events cotrrspnding to tailures of disk controller I aire

somewhat rare compared to taihires ot one at the processors. TherefOTor, we are

not able to obtain accurate results tar both the point estimate and the variance

ot (lhe sensitivity with respect to clir. However. when using Biasa//Ban cizg,

we are able to obtain much better estimates ot these quantities.

We next performed coverage experiments (see e.g., [I8]) to determnine Lte

validity of the confidence intervals that are formed based on the asymptotic

central limit theorems described in Section 4. Such studies aire important since

certain variance reduction techniquies somctimes do not produce valid confidencc

intervals, except for very long run-lengthsi (see e.g., 1181).

We performed experiments on estimates of the steady-state unavailability,

U, and its sensitivities with respect to both r and cifr, denoted by U,,2 and
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U',i1,, respectively, in the above described balatced system R-t follow~s. We chose

three run lengths corresponding to small, medium and large sample sizes, and wve

considered two ways nf estimating 11 and its sensitivities: standard simulation

and the Biam /ias! method with DIS. For end, method and run length we

ran R? = 100 replitations andi formed point estimates U,.. on~ or the regular

restimate and) UJ,,,.. ,Uej, for 0 = cr2 and Of r, of the sensitivity cstimntes,

and 90% confidence interval% rnr all or these estimates. We then calculated die

mneant percent relative bias (= 100% - ( 11R) T,"(1), ';. U)/U for the steady.

stale unavailability estinmator, Andl likewise for the sensitivity estimtators) and

the standard deviation of this. nian. Note that if Fan estimate is; unbiaserd, then

its menti percent relative bins should converge to 7ero as Rl - . We also

calculated the 90%Y coverages, which is thip percentage or the (computed) 90%

confidencre intervals that actunally contain (lhe true values of 11, 14, 2, anti U',,1,.

respectively. If the confidece interval is valid, then by definition, the 90%

coverage should be equal to 90%.

W~e also computed the mean percent relative ha~lf width of the 90% confidlence

intervals. For each replication. this relative value is computed using the point

estimate and not the true value. Trhe mean is computed over all replications

with a nonzero point estimate. The results are listed in Table -1. Note that.

as also seen in (121, the esttimates; using direct silation RTC significantly more

biased than those using importance sampling, and that its confidence intervals

are about an order of magnitude wider. Also note that tie values of the relative

bias and relative half widths for the sensxitivities with respect, to rrI are about

the same as those for the regular eet imnate, while these values for the other sen.

sitivity are generally worse. This agrees with the results given in Section 4.3.2.

Fuatrm~ore, for the rml un length, the coverage drops significantly below
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90% wh~en using direct simulation. Using our variance reduction techniquc, all

the coverages are close to the nominal 90% valuec.

The good behavior or the regenierative-based steady-state gradient est imat,,'s

described here can be expected to typically hold for the types of models gen-

crated by the SAVE package. Because the failure rates are usually orders or

magnitutic smaller th~an the repair rates, regenerative cycles tend to he short,

with a typical cycle consisting of one failure transition and one repair transition.

Even when us-ing imnportance samnplitig, regenerative cycles typically consist of

only a fe failure andl repair transition since we turn off failore biasing once a

system failutre occurs in a cycle. As a consequence we round it unnecess ary to

implement alternative variance reduction techniques to be used for steady-state

regenerative gradient estimation in the SAVE package.

6.2.2 Transient Measures

lit thuis section we discuss the results of or experiments for estimating rd.iahility

and its sensitivity with respect to both ri and r~fr. Recall that for transient

nmeasures we not only want time system to move quickly towards the set of system

railed states F, but also get there before the observation period expires. For

Markov chain simulations, these issues are (in some sense) orthogonal, since the

holding times that determuine the hitting timer are conditionally independent of

the embedded DTMIC that is biased towards hitting F. We therefore tuse the

same technique as in the stteady-state case to bias the embedded Markov chain

towards the system failed set, in addition to another independent technique

(e.g., forcing as discussed in Section 3.1) to reduce the variance due to holding

times in time various states. The likelihood ratios Corresponding to these two

aspects of simutlation are conditionally independent and can be formulated as
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in Section 3.1 and in 1121. The gnal of the simulation iP to study the relative

accuracy or the regolar estimate versus its sensitivities and to comnpare the effccts

or the forcing technique on thesc quantities. We considered only the balanced

system. For each measure, wc allowed cach methgod to run for 400,000 events.

The results are given in Tabile S.

For all inethods, we notice that Lte confidence ;ntervalit arc smaller for some

range of intermnediate time period% anti wider at the endsi. Also, thc three

tab~les indicate that forcing is mnost effective for short time intervals. These

characteristics ar~e discussted in 112).

It. is interesting to note that the relative accuracy of the sensitivity estimates

with respect to) rri are coinistently slightly worse than that of the regular esti.

mate, wh~ich strayst from the result that we obtained- rr the- steady-state inea*

sures. This; is becautse we are working with transient measures. The likelihood

ratio therefore includest ternis for the (randoni) holding times. Thus, when we

compute the gradient of the likelihood ratio, we aire including addititinal random

variables corresponding to the holing times in the sum, thereby increasing van.

ability. It is aso interesting to note that the relative accuracy or the sensitivity

estimates degrades compared to that of the regular estimate as the time horizon

increases. Thist is because the length of echl observation- increases as the time

horizon increases, thus increasing the number of random variables included in

the sumn for the gradient of the likelihood ratio, thtereby increasing the variance.

This is similar to the results fron Lte it-component parallel systetn.

6.2.8 Timing Experiments

Finally, Table a shows the results from some timing experiments which we per.

formned in, order to detcrmine how much extra CPU time is required to compute
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sensitivities. The experiments consitd of different simulation runs in which we

varied Lte number of sensitivities computed and recorded the amount of CPU

time taken in each run. AH or the experiments were carried out on an IRM

3090 computer using thie SAVE package, simulating the balanced system with

the biwhaI/id (0.5/0.5) technique for 100,O000 events. As one can see, there
is a fairly lag ixed cost in CPU timne for computing any gradiens u h

miarginal cos-t in CPU time for computing each additional gradient is small. It

is interesting to note thati(lhe additional timr required to complite eight senl-

sitivitics is about the same as the amount of time needed to run SAVE when

computing no gradients.

7 Summary and Directions for Future Work

- - In this paper we have shown~ that the likelihood ratio gradient estimiation icch-

nique can he an cffectivc practical tool for computing parameter sensitivities in

large hiarkovian model.% of highly dependable systems. In fact, both our analysis

and our computational experience suggests that the gradient estimates consid.

cred here are not significantly noisier than the estimates of the performance

measures themselves. In addition to discussing implementation issues that arise

in calculating and computing such gradient estimnators, we also show that the

derivative and expectation interchange implicit in obtaining the validity of the

estimators does in fact hold for at widc class of performance measures associated

with finite-state continuous. time Markov chains.

A number of interesting research directions present themselves for future

work:

1. development of additional variance reduction techniques for the likelihood

ratio gradient estimator;
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2. an analytic proof, for the general Nlarktivian model ora highly dependable

system, that the -wiriothility of the gradient estimator is roughly or the

same order as that of the performance mea.ure itself (thereby extending

the-results or this paper heyond our current three and five state examples

given in Section 4.3).

3. extending the methnds or this paper to non.Markovian models, in which

the failure and repatir times are no longer necessarily exponential. This

will necessitate the deve~rpment or eflir;ent non-regenerative techniques

for estimating steady-state grAdients in a rare-event setting.

Acknowledgments. We would like to credit Adrian Conway for initial work

on combining likelihood ratio gradient estimation with importance sampling ro'r

steady-state measures when using discrete-time conversion.
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8 Appendix

Now we will justi)y the interchange or derivative and expectation. In order to

do so, we will make the following assumptions:

Al. State space E is finite.

A2. Q(.) is continuously differentiable for 0 E 0.

AS. P(0) is irreducible for 0 E 0.

A4. r(n) = {(r, y) : I'(0, r, y) > 0) is independent of 0, for 0 E O.

AS. 7" is a stopping time satisfying the following two conditions:

I. P{IT> n) = for all 0 E V).

2. There exists some z. > 0 For which the moment generating function

MAt 7 '(z) of N(7") converges for all z E (-zn,zn) and all 0 E 0.

AS. z(0) has one of tie follwing rarms:

I. Z(0) = Is. where S is some (measurable) set of even:

2. Z(O) = f1, , ',)ds. where T is some stopping time satisfying as-

sumption A5 and I is a real-valued function defined on (0, E) satis.

fying assmunptions A7 and AR.

A7. 11111 = sup{jf(0,x)I : 0 E ex E E) < oo.

AS. tIf'11-- sup{If'(0, )I :0 E 0,: E) < oo.

Note that under assumptions Al and A3, our CTMC Y is a regenerative

process. Also note that when we express a steady-state measure T(9) using

the ratio formula, we have that r(O) is a ratio of two expectations of random

variabler, eacJh having the second form of Z(G) given in assumption A6.
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Also, note that by assumption A 1, we can let " " r(e), i.e. r(0) is indepen-

den( of 0.

The first condition of assumption AS is necessary to insure the validity of

the ratio formula. Also, there arc nuiincrouis examiples of stopping times which

satisfy assumplion A5.

Proposition I Define' T = 7I;(r)+,, for Rome deterministic time I, i.e. T in

the lime of the first transition after lime 1. Supepose assumptions AI and A 2

hold. Then, T satisfies nsasimption A5.

Proof. First, define q" = sup{q(O, i) : 0 E O,i E E} and N() = sup{n >

0 : tC + .-- + 1*_ < (), where 1; is an exponentially distributed random variable

with mean l/q" for all k. By assumptions AI and A2, q" < co. Therefore.

{N*(t) : t > 0) is a Poissnn process with rate q*. Let Af[(z) be the moment

generating function of N*(). Then

h'(Z) = c(' -I)q' < 00

for all finite I and z. Hence, N'(I) has a convergent moment generating function

for all finite I and z. Now, 1'.{N(l) > k) _< P.{N*(I) > k) for all 0 E 0, where

P.{.) is the probability measure corresponding to {N*(t) : I > 0) (see 121]).

Thus, we have that N(t) also has a convergent moment generating function for

all finite I and z. m

Proposition 2 Define T = 1, i, ere I > 0 is cone delerministic time. Suppose

assumplions AI and A2 hold. Then, 7' atisfies assumption AS.

Proof. Since t < 7v(j)+1, the result follows from Proposition 1. *
Proposition $ Define T = CA = inf{t > 0 : 1i_ ( A, 1', E A) for some set of

states A, i.e. T is Ike hitting lime (a some set of states A. Suppose assumptions

AI - A4 hold. Then, T satisfies assumption A5.
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Proof. Since 7 = inf{f I V,- A,)', E ,I) for some set A, we have that

N(T) = inf{n > 0: X, E A). Let X E A. By as-,mptions A3, and A4, we have

that for each y e E, there exists an integer m(y,x) such that Pm(.v,)(O,Y,X) >

0, where Pk(0) is the k-step transition matrix of the embedded DTMC X. Let

m = max{(y,.) : y E Ez E A), which is finite since IEI < oo. Now we have

that for all r E A,

I'#{N(T) > mXn = I) < 1',{X((,r)q # X,. = Y)

= 1 ' ,r)(1. ,r)

where p = sup{I - I"mY")(,.) : 0 E O,y E ,,r E A). By ansumptinns Al.

A2, and A4, inr{P(o, r.) 0: E 0, (r, y) E r) > o, and so p < i.

Now we have

P,IN(T) > ran)

= J P,(N(7') > m(n - I). X.(.-,) = ygl4(N(? I. ,njXn = Y/)
yCA

< ,, P,{N(T) > i(n - Y)..)..- = ,)
pf A

= PoI{N(T) > m(n -1).

By induction, we obtain

R#(N(T) > in) <p".

So we have the moment generating runction

COohI." tT~(z =' I#(uP.N(T) = nt)

PON(7) = 0) + E j e'(""+')PefN(T) -nm + I)
is=--O 1----

_< PN(7) = 0) +2 I ,,N(T) > ,am) _
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For z < 0, we have that

Co

AtNCT)(z) < 1'oN{(7') =o} + Zmr0(N(T) > nmf."'m
it=n

< I'# (N(T) ) + m E[pr~}

For z > 0, we have that

C0

At)(z) < I',{N(7") = 0) + mre{'(T) >nm}" ( '

R=A

<5 I'lfN(7') = o} me" pc'"

lence, there exis.r sone zn > 0 such that h4, ~r(z) < oc for all z C (-Zn. Zn)

and all 0e. I

We now state a lenina.

Lemma 1 If assurnptions A I-A8 hold, tMen

EOZ(O)" < o

,Z<(a) < 0

for ll k and all E 0.

Proof. When Z(O) = Is, the result obviously holds. So now assume Z(O) =

0' f (0, ))dq. Then we have that IZ(O)l < Ilf lT and IZ'(O)I 5 II! 117'. Now

assumption AS implies that E. 7' < oo for all k and all 0 E (, which, along

with assumptions A7 and A8, gives tis our result. U

lence, we have that the performance measures discussed in Section 2.3 sat-

isfy assumptions AS-AR. Now we will justify the interchange of the derivative

and expectation.
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Theorem 1 If coaanilpfionx .41 - A R hold, theni

~ f~, zO)L7; 0 OnJ =E#,V(0(G) + I,.z(0,1) lV(T,,, ).

Proo. 'To jusiy the interchanige. wc will show that the difference quot ients

h-'[7,(On +t h)/4(T, On + lt,0,A - Z 0 )

are eloiatctd by an integrable randoi variable. By the mean value theorem,

we have that the dilrere-e quolient is equal to

Z'(i)I/,(T, q, On) + 7,(,1)l(T q, 0..),

for Somet, 17 E MO., #A 4hI).

D~efine

jjq'It = suap{11'(0, :)i -10 - GOn :5 h.: E)

ltt'lqIt = sup (19'(0, r)/9(0,r)l :10 - ~OI :5 h, r E E)

Itq/q(On)II = suP{((, r)/9(0n.r)i :10 - 0,i :5 h,zx C- E)

jig - q(On)II = suP 4 1(0, -) - q(On, ,)j: 10 - Onl 5 ,: E)

HIP'/IIl = Ftap4I"(O,r,Y)/'(0, I,Y): 10 - 0ol 5 ht, (X,Y) E I*)

tI'P/I(Oa)It = sup{iI'(0, r, y)I(O,, y)l : 10 - GOt 5 h, (r, 1/) E )

where I" = 1*(0). By assumptions A 1, A2, and A4l , all of these terms are finite.

From Equation 3.2, we have that 1'(T, q, On) is equal to

N#(T) X. - q'(i ,t , x)Lj + 9'eXX~, '(17, xjcr)+2 )(- TNv(T))]

q'(T (9,X&) exp{-(q(ti, Xi,) - q(oc,, Xa))i ', X4

CXPI-(q~q- qIVT+ )WO, Xij(T)+j))(T -T?;(-,))).
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Now we can bound I1V(T, 17,On)jI).b-

[(N(T) + 1 )(1191/qI1 + II/I)+ Ijq'jI E " (j + 11q'11(T - TNC?.-))]

~ IP1(O)Ii( T)+l{It T (,I '~~i

exp{I11q - 9(0o,)II(T - i(),

whirli can in turn be bounded byV 4d1(1)d2(h), where

N(T)+1

01 (hu) = (NV(7) + I )(Ijq'/qII + 11 PV/PID + iiII1 E~ 1, (8.1)

012(h) = qq(O ) I' I'(O,.)11N(7)+t x C~PIN - (O)II N()+

f. i&}

Note that we can bounid IZ(0hI)IL'(7*. i.lOn)l by 0(h~) =-IZ(0n)11, (h)41 2(Ii). So we

now want to show that i6(h) is integrable ror lh sufficiently small. To do this, we

will Itnw that there exist, some ze, > 0 such thai Afe(z), which wc define as the

moment generating funct ion or E I )1, converges for all z E (-za, zn) and all

0 E0.

First define go = inf fq(O, T) : 0 E6 0, r E1E). T[hen

Aft(--) = Et p F N ( k

= [N~~~7)+I 
,[~t~]

N(r)+i

[= , 'I xf- IIn q(G,&)-

k-n

EO 1 (0 k
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for z sufficiently small sinr N(T) has a convergent moment generating function

in a neighhorhnod of 0 by assumption A 5. Since AI4 (T)(z) and M,(z) both

converge in a neighborhood of ) for nil 0 E O, we have that N(T) and t-.t=, ik

have finite moments of all orders for all 0 E 0.

Now note that by a-ss.mption A2. jIq/q(O,)I "- 1, IIP/r(On)l -- 1, and jjq-

q(0o)] - 0 as h 10 . Ilencc, by repeated applications of the Schwar, inequality

and using Lemma I, we have that di(h,.) is integiable for snme ho > 0 which is

s,ffirienily small. Now noting ltat for 0 < ht < h.., we have 4(hl) < di(hn), and

so we c:an use qi(h 0) as our dominating rnndom variable For Z(O)V(T, .0--).

Tlhus. we have shown that Z(O.)I.'(7", r, fOa) is integrable. Similarly, we can show

that Z'(i)1,(7; j, On) can also he dominated by an integrable random variable.

I lnrc. by noting that l,(7, :, 0,.) - I as h j o, the proor is complte.

Now we will give a proof or tic asynptotic variance or our estimator of r'(O,)

given in Equat ion 4.1. In order to do this, we need the following result (see 12 1],

p. 1 it, for the proof).

Theorem 2 (Central Limit Theorem) let X,, i = 1, 2...., : ',enden.

I and identicntIJ dislri uted d.dimnennional rndnm Yector with mean rector It

and rorariancr inafrir E, and #vppone g : -4 R is diffirentiable at p. If

EJlX,II2 < no, the.n
%A-j(. ^,(O,,,2)

asn -4o, Where- i]*)Do,)

2 rg(p)IV01,()

end T g(.) is Ihtc radient of g.
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Now we give a proof or toe expression for the asympLOtic vriance Or the

estimate of the gradicut when using the ratio forgmla.

Theorem 3 If oa.qumpfin. A I - AR hold, then the aimiploi variance of (hr

cailimate of r'(On) uiaing F9qil 4.1 ia given bY ,9qatiorn 4.2.

Proof. We define the vector V = (A, B, C, D), where

A = r Z(0) +4 Z (0)l (T. on "

C 77 Z7 (0)

1) =TL'(TOn,On)

a- ill Equal inns -1.3..4.6. In order In apph 'flucorent 2, we first need to shnw that

EII -1VII' < vo. Assumption AS and Letima I show that 7'. ZT(G), and Z.,.(O)

all have finit e moinent of all ordIers. Now note that I10(t. Oi,Oc,0 is bounded

by 4.l(h) for all h, > 0, where 01(h) is defined in Equation 8.1 in the proof of

Theorem 1. Since 963(h) lias a. moment generating function which converges for

all stu Mciently small ha, we have that L'(, 00,Or,) also has finite momnents of all

Ordhers'. Hence, by repeated applications of the Schwarz inequality, we have thiat

A4, B, C, and 1) all have finite second moments, which implies Ee0II VW1 < oo.

In order to apply Theorem 2, we define g : '-Ras

g~a, , cd) b C '(8.2)

The first condition of assumption AS assures that g is differentiable at the

point (a, O,7,6). Thuns, by computing the gradient of g and plugging in the

appropriate values into the expression for the %Atiance given in Theorem 2, thIe

proof is complete.
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Now we show that we obtain better estimates of the gradients when we 'se

conditinnal Monte Carlo. Before we prove the result, we make some definilions.

We define the vector V = (A, H,C, I) as in the proof or Theorem 3, and we let

W = E,.IIX] = (i' , c, ), where

Ai = F,.[,tIx] = (7'(o) + G(n)L'(T, o.n)

S= I.A.IRIX = II(OA)

r = .JCX] = (o,0,)

) = E,.[DX) = 1'(o) + II(o)/,'(T.o,Oe0,0,,),

where G(O), 11(0), G'(0), II'(0), and L'(r,, 0t,, O,) arc defined in Eq,,ations .1.8,

4.9, 4.12, '4.13. and 4.1,1, respectively. L,et p = EeV = EW. Then, by

Theorem 2, we have that

) (i)] A(0, N(,)

as o- , and

[n(Wn) N(O,-4)

as 1- oo, where g is defined in Equation 8.2, and

=. -
Vi

I a
¢ = - W

n

i

So we have that 0r7 anod r are the variances of' the gradient estimators when

using t|h€ ratio formtln obtailned wlfhma and with conditional Monte Carlo,

respetively. Then we have the following result.
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Proposition 4 ir 2 < .

Proor. By noting that

w- ,= ,fi'g(u) 7 (V - ,)IXI.

we have the rc. silt by lh. pritcipk of conditinnal imlc Carlo (fee [3). I
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Number Failure Avg Number Steady.State Sensitivity
or Rate of Events Unavailability w.r.t. A

Comps (A) per Regen Nunrical Direct Numerical Direct
(__) Cycles Result Simulation Resit Simulatinn

2 0.0229) 2.05 0.1000 x 10- 2  0.0m)1 x 10-2 0.1954 x 10- 1 0.1934x 10 - 2

-_ 1.6% _ 1.6%

4 0.098.1 2.63 (.1000 x 10 - 2  0.1014 x 10-2 0.3593 x 10- 2 0.3559 x 10- 2

_h 4.4% ' 4.7%

6 0.1233 4.12 0.1000 x 10 - 2 0.0999 x 10-2 0.4901 x 10- 2 0.1872 x 10-2
l: - 6.5% -_ _ 7.3%

8 0.1375 7.53 0.100() x 10- 2  0.1007 x 10- 2  0.5859 x 10- 2 0.5677 x 10-2

_l: 6.5% _1: 9.0%

10 0.1,126 16.39 0.1000 x 10 - 2 0.1O0 x 10- 2  0.6457 x 10-2 0.6230 x 10- 2

______1 8. d10.4%

12 0.J142 43.89 0.1000 x 10- 2 0.1020 x 10-2 0.6755 x 10-2 0.6784 x 10-2
d8.3% -l: 13.1% _

Table I: Estimates or steady-state unavailability and sensitivities with relative 90% confidence intervals for an
.-component system using direct simulation (1,02.1,000 events)
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Performance Regular Estimate
Measure Numerical Direct Biasl/Bias2

Result Simulation (0,/0.5)

Unavailability 0.9309 x 10- s  1.0171 x 10-8 0.930. x 10-s
4. 27.1% 4.: 2.7%

MTTF 0.1637 x 10I s  0.15241 x 10+6 0.1626 x 10+6
__ 25.7% 4. 2.5%

(a) Results for regular estimates

Performance Sensitivity w.r.t. rr2
Measure Numerical Direct Biasl/Bias2

Result Simulation (0.5/0.5)

Unavailability -. 1252 x 10- 4  -. 1256 x 10- 4  -. 1265 x 10- 4

433.0% 4-3.3%

MT'F 0. 109.9 x 10+6 0.0A79 x 104 6  0.1109 x 10+ s

I :h 33.6% 4- 2.6%

(b) lesults for sensitivities w.r.t. rr2

P'erformance Scnsiti'ity w.r.t, cl fr
hMeasure Numerical Direct Bias 1/Biat2

Result .1Simulation (0.5/0.5)

U~navailability' 0.2315 x 10-5 0.3720 x 10- 3 0.2590 x 10- s

4- 641. 1 % ± 6.3%

hITTF -4065 x 10+ 5 -. 5893 x 10+ ' -44 18 x 10+5
4. 1 k 8.6% ± 6.0%

(c) Results for sensitivities w.r.t, cl~r

Table 2: Estimates or steady-state unavailability, MTTF, and sensitivities with
relative 90% confidence intervals for the balanced system (100,000 events)
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Performance Regular Estimate
Measure Nuerical Direct Biasl/BMalancing

Result Simulation (0.5)

Unavailability 0.6967 x 10 -7  0.4165 x 10- 7  0.697r x 10j-

4- 164.5% -12.4%

MTTF 0.2188 x i04* 0.4703 x 10 +  0.218:1 x 10+8

_- 161.5% - 2.3%

(a) Results for regular e-stiviales

Performancc Sensitivity w.r.t. rr2
Measure Numerical Direct Bias /Balancing

I______ Result Simulation (0.5)

Unavailability -. 9436 x 10- 7  -. 7939 x 10- 7  -. 9384 x 10- 7

-01 14.5% : 3.1%

ITTF 0.1.481 × 10 + ? I•4555 x 10 + " 0.1470 x 10+ s

________ + 161.5% 4- 2.4%

(b) Results for sensitivities w.r.t. rr2

Performance Sensitivity w.r.t. c jr
Measure Numerical Direct Biasl/Balancing

I Result Simulation (0.5)

Unavailability 0.2324 x 10-7 -. 3425 x 10-i n  0.2361 x 10- 7

0 4 166.8% * 6.0%

MTTF -. 7298 x 10+7 O.1J04 x I0+ s  -. 7318 x i6 + 7

I- 191.0% - 5.2%

(c) Results for sensitivities w.r.t. ci!r

Table 3: Estimates of steady-state unavailability, MTTF, and sensitivities with
relative 90% confidence intervals for the unbalanced system (1,000,000 events)
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If.L'ents Steady-State Unavailability
per Direct Hiasl/Bias2Rep Simulation 1(0.5/0.0)

Re] Bias Rel Coverage Rel Bias Re] Coverage
(Std DevJ IM, (S d DE') IHW I

2000 6.95% H-1.40% 54% 0.74% 18.88% 85%
(12.82%) (1.20%)

20000 -3.94% 65.47% 90% 0.39% 5.99% 92%
(3.41%) (0.34%)

200000 1.29% 19.60% 96% 0.05% 1.90% 90%
(1.09%) _ (o.13%)

(a) Results for steady-state unavailability

Evenis Sensitivity or unavailability w.r.t. rr2
per Direct Biasl/Bias2
llep Simulation (0.5/0.5)

Rel Bias Re] Coverage Rel Bias Rel Coverage
__ (Std Dev) MW (Std Dcv) IIW

2000 1.1.03% 155.96% .16% 0.37% 23.26% 84%
(1..15%) _(1.54%)

2000(( -1.86% 82.30% 8,1% 0.40% 7.46% 92%
(4.96%) (0.43%)

200000 2.23% 25.27% 94% 0.03% 2.38% 86%
17LO 0 (1.45%) ____ (0.16%) 2.38%

(h) Results for sensitivily of unavail.*biUty w.r.t. rr2

Events Sensitivity of unavailability w.r.t. clr
per Direct BiasI/Bias2
Rep Simulat ion (0.5/0.5)

eel Bias Re Coverage Rel Bias Rel [ Coverage

(Std Dev) IJW - (Std Dev) HW

2000 20.73% 432.36% 11% 3.73% 46.45% 90%
(36.64%) (2.86%)

20000 .2.13% 147.02% 62% -0.18% 14.86% 82%
(10.66%) (1.04%)

200000 5.25% 56.79% 86% 0.10% 4.68% 95%
(3.62%) , (0.27%) -

(c) Results for sensitivity of unavailability w.r.t. clfr

Tatble 4: Coverage experiments for estimates of steady-state unavailability and
sensitivities on the balanced system (100 replications)
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Unreliability

Time (t) Nume~rical Diec Siuato Biasl/Bia2 (0./.)11 Result Standard Forcing Standard Forcin{_

4 0.1528 x 10- 4  0.1034 x 10- 4 0.1481 x 10- 1 0.1583 x 10- 4 0.1522 x 10- 4

4k 116.3% 4 23.9% 4 7.0% 4. 1.4%

16 0.8734 x 10- 4  1.0721 x 10- 1 0.9128 x 10- 1 0.8693 x 10- 4  0.8699 x 10 4

1. ± 37.7% ± 22.8% ± 3.3% ± 1.3%

64 0.3804 x JO-  0.3552 x 10- s 0.3421 x 10- 3 0.3801 x 10- 3 0.3841 x 10- s

_- 24.0% 4 2 1.9% 4h 1.8% 4 1.1%

256 0.1552 x 10- 2  0.1463 x 10- 2  0.1578 x 10- 2 0.1565 x 10-2 0.1578 x 10- 2

-± 16.8% ± 19.9% ± 1.5% ± 1.0%

102,1 0.6225 x 10-2 0.5598 x 10-2 0.62,1.4 x 10- 2 0.6275 x 10- 2  0.6233 x 10- 2

±_ 14.9% ± 16.0% . 4.9% 4 4.3%

(a) Rcsults for unrilabity

Sensitivity of Unreliability w.r.t. rr2

Tim: (t) jNumric~al DirdctI Simulation Bisl s (05/.5Result [ Stadard Forcing l Standard F.0rcing

4 -0.4353 x 10" s  -0.1778 x 10- 5  -0.5126 x 10- 5 -0.4113 x 10-  -0.4280 x10 - s

_k 117.0% :- 39.8% ± 13.4% 4k 2.9%

16 -0.4886 x 10- 4  -0.6391 x 10- ' -0.4799 x 10- 4  -0.4845 x 10- 4  -0.4853 x 10- 4

4k 59.8% 4 48.0% 4 6.1% 4 2.5%

64 -0.2455 x 10- 3 -0.2084 x 10- 3 -0.1679 x 10- 3 -0.2420 x 10-a -0.2467 x 10- 1
+- 46.7% ± 41.6% ± 3.6% ± 2.3%

256 -0.1031 x 10- 2  -0.0928 x 10-3 -0.0877 x 10-2 -0.1040 x 10- ' -0.1055 x 10- 2

.1 - 35.0% . 42.4% .E 4.0% ± 2.7%

1024 -0.4156 x 10.- 2  -0.5200 x 10- ' -0.4504 x 10- 2 -0.4220 x 10-2 -0.3965 x 10- 2

4_ 33.4% :E 40.8% :l: 15.0% - 12.6%

(b) Results for sensitivities or unreliability w.r.t. rr2

54



Scnsitivity of Unreliability w.r.t. cifr
Time (t) Numerical Direct Simulation Biasl/BiaQ2 (0.5/0.5)

Result Standard f Forcing Standard Forcing

4 0.3788 x 10-  -. 3193 x 10- 7  0.4685 x 10- ' 0.4038 x 10- ' 0.3719 x 10- '
4- 116.7% . 59.2% - 19.5% .h 4.3%

16 0.2168x 10- ' -. 0108 x 10- 4  0.2532 x 10- 1 0.2118x 10- 4  0.2141 x 10- '

- 40.6% . 61.1% :h 9.3% - 3.8%

61 0.9148 x 10- 4  0.8050 x 10- 4  1.0965 x 10-  0.9301 x 10- 1 0.9367 x 10- 4

1 ± 74.2% - 63.9% :h 5.5% ± 3.5%

256 0.3853 x 10- ' 0.3057 x P - 1 0.6703 x 10- 3 0.3971 x 10- 3 0.3955 x 10- 1
_h 57.4% ± 44.6% ± 6.2% - 4.2%

102.1 0.15.12x 10 - 2 0.1415x 10 - 2 0.2143x 10-2 0.1247x 10-2 0.1377x 10-2

11 ± 60.6% :k 18.7% :- 27.1% - 22.8%

(c) Rcsults for sensitivities of unreliability w.r.t. cifr

Table 5: Estimates of unreliability and sensitiities with relativc 90% cnnfidence interals for the balanced system
(400,000 evcnts)
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Number nf CPU Scerond
Se..mitiviles l m

Computed

0 1 1.38
1 I 7.18

2 17.92
4 19.00
8_ 22.60
16 28.7,1

"abi 6: CPU times taken for computing ensitLivities in balnnced system uing
hia l/biapt (0.5/0.5) for 100,000 simulated evenot
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Abstract

Thiq paper discusses the application of the likelihood ratio gradient estimator to
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